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where the symbol z: implies that the summation does not and

include n = m. On replacing the coefficients C~~(z’) by the

first three terms of its Taylor series expansion, a re- O.n=* [cm-cm]. (A6)

currence formula that expresses f~(z – Az) in terms of

f~(z) is obtained upon integration. Thus the solution of ACKNOWLEDGMENT
(Al) for the region z~ >Z >ZB is
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Modal Analysis of Homogeneous Optical Fibers
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Abstme—’Ihe modd chmwterktiee of homogeneone optieuf fibers with

severaf types of deformed boundaries are arsatysed by a numerical method

based on the point-matching principle. The propagation constants of

various modes are given. The separation of degeneracy in the dominant

mode is discussed. ‘llse resutts of microwave-model experiments show good

agreement with those of calcsdation.
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I. INTRODUCTION

w

ITH THE RECENT development of communica-

tion techniques using low-loss optical fibers, it be-

came important to investigate detailed electromagnetic

fields and propagation characteristics of various optical

fibers. We pay attention to modal characteristics of a class

of optical fibers with deformed boundaries which would

be caused in the process of fabrication. Many approxi-

mate methods have been recently applied to analyze

graded index optical fibers. Yet, only a few papers have

discussed the problem of deformed boundaries.
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Yeh [1] has analyzed elliptical dielectric waveguides by

deriving infinite determinants cm hybrid modes. Schlosser

[2] investigated a slightly elliptical dielectric wire by using

the solution of the wave equation in the circular cylindri-

cal cc)ordinates. He also calculated the delay distortion of

signals in glass fiber due to small elliptical deformations

of bounds ries [3]. Since wave equations are not separable

except in eleven coordinate systems, numerical methods

are required.

Goell [4 I described a computer analysis of the propagat-

ing modes in rectangular dielectric waveguides. He ex-

panded electromagnetic fields in terms of circular

harmonics and employed the point-matching method to

satisfy boundary conditions approximately. This approach

is considered to be applicable to dielectric waveguides of

other cross sections. James and Gallett [5] also pointed

out the usefulness of this approach. Bird [6] has discussed

guiding structures of polygonal boundaries based on the
hybrid fin ~te element method.

This paper describes the results of computer analyses

on the propagation modes and electromagnetic fields of

optical fibers with deformed boundaries by extending

Goel’1’s approach to more general cases. Microwave-model

experiments that confirm our theoretical results are also

described.

H. IMETHOLI OF ANALYSIS

A circc lar dielectric waveguide has been rigorously

analyzed by the method of separation of variables. As a

resul~, the electromagnetic fields in the waveguide are

expressed in terms of Bessel’s functions, and those outside

the waveguide are expressed in terms of modified Bessel’s

functions. The treatment of hybrid modes is necessary to

satisfy the boundary conditions on the waveguide surface.

The dominant mode of this waveguide is known as the

HE1, mode and has no cutoff frequencies.

Numerical methods are required to analyze general

boundaries. It is natural to use a linear combination of

Bessel’s functions in expressing electromagnetic fields of

dielectric waveguides with boundaries close to circular.

Therefore, the longitudinal components of the electric and

magnetic fields can be written [5]

*-[I

m

n=()

in the waveguide and

cc

n=l)

outside the waveguide where

Fig. 1. Illustration of a tangential component of an electric field vectcm

E,, composed of the r-component E,, and the O-component Et,: c1 = n~c(y

#--~2_k2
o (6’)

k:=u2c, ).LO (7)

and Jn(hr) and K.(pr) are Bessel’s function and modified

Bessel’s function of the nth order, respectively.

The other field components are derived using Maxwell’s

equations

where k = kl in the waveguide and k = k. outside the

waveguide. The boundary conditions imposed on fields

are the continuation of tangential components. The

tangential components of fields at any boundary point

can be expressed by combining the r- and d-components

of the field. This is illustrated in Fig. 1.

The boundary conditions would lead to an infinite slat

of equations. To make the problem tractable, boundaly

conditions will be satisfied only at a finite number of

points on the boundary. The infinite series are m.mcate:d
to form a square-matrix equation on the coefficients of

basis functions. Since this equation is homogeneous, the
determinant must vanish.

Combined with (5) and (6), the determinant equation

gives the phase constant of propagating modes. Let us
emphasize that the required number of basis functions is

affected by the symmetry and the smoothness of the

boundary geometry.

In this paper, we adopt the Goell’s scheme [4] and

designate propagation modes as E~n or E:. according to

the direction of the electric field vector in the high

frequency limit. This method of denoting modes is ccm-
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venient when boundary shape has symmetry and becomes

@

Y

difficult when the boundary lacks symmetry.
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and the optical frequency is also normalized as
... . . . ..-’

(16)
Fig. 2. Types of deformed boundaries. (a) EfIipse. (b) Chipped

circle. (c) Egg shape. (d) Asymmetrical shape.

where a is the maximum diameter of a fiber.

III. RESULTS OF COMPUTATION

A. Types of Treated Boundaries

Fig. 2 shows several types of boundaries treated in our

computation. The ellipse (a) can be analyzed most easily

by this method because it is smooth and has two axes of

symmetry. In other words, we only have to treat the first

quadrant. The chipped circle (b) also has two symmetry

axes but has four corners. Since fields change rapidly near

corners, more boundary points should be taken compared

with the case of smooth boundaries. The egg shape (c) has

a smooth boundary but has only one symmetry axis. An

asymmetrical shape (d) is also analyzed.

B. Propagation Constants

Figs. 3 and 4 show the calculated values of P’ against A

for two types of boundaries. It is seen in all of these

graphs that the degeneracy of the HE1 ~ mode has been

lifted by the deformation, and the mode separates into a

E~l mode and a E~l mode. The TEO1 and TMO1 modes of a

circular dielectric waveguide are corresponding to the EJ1

mode and the E~l mode, respectively. The degeneracy of

the HE, mode is also lifted, and the mode separates into

a E~2 mode and a E~2 mode.

C Number of Basis Functions

The convergence of eigenvalues or the normalized prop-

agation constant P’ depends on the symmetry and

smoothness of the boundaries, as shown in Tables I and

II. The dimension of the matrix is four times the number

of boundary points. The maximum dimension of matrices

permitted by our computer is about 100. This means that

the types of boundaries explored in this paper can be

easily handled, and P 2 can be obtained with three signifi-

cant digits. Table III shows typical matrix dimensions.

The computation times for obtaining P’ from the root

of a matrix of dimension M increases exponentially with

M. In our computer HITAC-8700, this relation is

S =0.016 exp (0.062A4)(s). (17)

A

Fig. 3. The normalized propagation constant of an elliptical fiber:
b =0.8a, An, =0.5.

1.0
4V 1

A

Fig. 4. The normalized propagation constant of
b= O.9a, c =0.8b, Anl =0.5.

an egg-shape fibec

D. Wave Functions

The convergence of an algorithm for wave functions is,

in general, slower than for the evaluation of P2. However,

it is important to see if the numerically obtained wave

functions are physically reasonable, even if only the prop-

agation constants are required. Fig. 5 illustrates the con-
vergence of the EZ-component in the case of the E~l mode

of the chipped-circle boundary.

E. Field Distribution

When eigenvalues are determined, fields may be olb-

tained. It is an important and interesting fact that the
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TABLE I
THE CONVERGENCE OF P 2 BY INCREASING THE NUMBER OF BASIS

3.5s

FUWTIONS N IN THE CASE OF AN ELLIPTICAL FIBER.

b= O.8a, Anl =0.5

E=140DE

P’

(a)~x
22

4.0

0.3499

0.3534

0.3538

0.3538

0.3538

~Y
13

N

——

A 4.4

2

3

4

0.5223

0.5225

0.5225

0.5225

0.5225

0.4424

0.4397

0.4398

0.4399

0.4399

0.3038

0.3010

0.3011

0.3011

0.3011

5

6
(h)

}Ez

TABLE II
THE CONVERGENCE OF P 2 BY INCREASING THE NUMBER OF BASIS

FUNCTIONS N IN THE CASE OF AN EGG-SHAPE FIBER.

b= O.9a, c= O.8b, An, =0.5

F\ P’

(c)

Fig. 5. An illustration of the convergence of wave functions. T&I IEN%1521E:11MODE

~istribution of the E= component on ~he x axis in the case of the Efi
mode of the chipped-circle fiber: b = 0.8a, An*= 0.5, A ==2.0. (a;~
N=5. (b) N=7. (C) N=9.

1- A

T

8

9

10

N
11

12

13

2.0 I 4.0 I 3.2 3.2 I

0.5653

0.5722

0.5620

0.5656

0.5678

0.5650

0.4668

0.5012

0.5070

0.4783

0.4647

0.4668

0.5220

0.5088

0.5022

0.4922

0.4979

0.4966

0.6556

0.5573

0.5816

0.5639

0.5624

0.5699

I
14 0.5669 0.4677 0.4951 0.5643

L 15 0“5’5’ 0“4653 0“4’72 0“5651

TABLE HI
THE REQUIRED DIMENSION OF MATRICES M FOR Vmrous

BOUNDARIES.

(a) @)

Fig. 6. The direction of electric field vectors in the cross section of a~cl

egg-shape fiber: b = 0.9a, c = 0.8b, Arr, =0.5, A = 2.o. (a) E:l rnch,

(b) ~~1 mode.

( 18;1

i

CHIPPED-CIRCLE

i

20

1

28-32

EGG SHAPE 3!3 46 I in the case of an ellipse or chipped circle where C is a

function of A.

Examples of calculated values are

C= 0.305 (ellipse, A = 2.0) (19)

C= 0.166 (chipped circle, A = 2.0). (20)

If the parameters of an optical fiber are given by

I–J 44 I 4’ASYMMETRICAL SHAPE

dominant HE,, mode separates into two modes which

have different polarizations and no cutoff frequencies.

These two polarizations are related to the existence of two

independent polarizations of plane waves in free space.

Fig. 6 illustrates the pattern of the electric field vectors of

these two modes in the cross section.

b–a
— = 0.001

2a
Anl =0.005 AO=l.Opm (21)

the calculated fiber length L such that

F. The Phase Constant Difference Between the Two Funda-

mental Modes
(22!)

is 60 m,In the f~brication process of optical fibers, the nomi-

nally circularly symmetric cross section gets more or less
deformed. Therefore, the two fundamental modes E:l and

E~l have a phase constant difference A~ [3]. When the

two modes are excited at the input of the optical fiber,

rotation of the polarization is significant after some length

L of fiber. When the deformation of boundaries is small,

A~ is given approximately by

IV. MICROWAVE-MODEL EXPERIMENTS

We tested the accuracy of the numerical data calculated

by the above method by microwave-model experiments.

Teflon was selected as the dielectric material to fcmm

waveguides since its dielectric constant is known and it

has no dispersion at microwave frequencies.
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Fig. 7. Experimental setup to measure resonant frequencies of Teflon
rod waveguides.

— COMPUTED

06 -
MEISURED

. . . HE,,
. . . . . TED,

. . . . . TMO,

# 0,4 - a.... HE21

0.2 -’

00
1 2 3

A

Fig. 8. Comparison of measured values with calculated values of P 2 in
the case of a circular dielectric waveguide: n;= 2.04 (Teflon).

The chipped-circle boundary was selected because it

can be fabricated easily. Teflon rods with diameters from

1 to 4 cm were used to make resonators. Resonance

frequencies of these resonators were measured at

frequencies from 8 to 12 GHz by the experimental setup

as shown as the diagram in Fig. 7. The values of P 2 were

calculated from these data and plotted in Figs. 8– 10.

Fig. 8 shows the case of a circular cross section. Be-

cause this has been analyzed rigorously, good agreement

between these theoretical and experimental values is a

check on the accuracy of the experiments. Figs. 9 and 10

show the gradual change of P 2 for a chipped-circle

boundary of increasing deformation.

These experimental results agree well with calculated

values. Hence, the numerical analysis described in this

paper is considered to be useful for solving deformed-

boundary problems.

V. CONCLUSION

The modal characteristics of homogeneous optical

fibers with several types of deformed boundaries were

investigated by a numerical method based on point-

matching. The propagation constants were obtained with

three significant figures. Microwave-model experiments

using Teflon waveguides agree well with the calculated

values.

A functional-analysis approach would be necessary for

investigating precisely the convergence problem in this

method. However, the results of computer experiments

P’

08

06 - . . . . . MEASURED

04 -

02 -

o~
1 2 3

A

Fie. 9. Comparison of measured values with calculated values of P2 in

;he case of’ the Ef, mode of a chipped-circle dielectric waveguide:. .
nf = 2.04 (Teflon). ‘‘

f__A4L-
0 1 2 3.

Fig. 10. Comparison of measured values with calculated values of P*
h the case {f the Efl mode of a chipped-circle dielectric waveguide:
n;= 2.04 (Teflon).

and microwave-model experiments seem to justify the

practical use of this method for analyzing various

boundaries close to a circle.

The outside medium was taken to be a vacuum. How-

ever, structures consisting of a core fiber and a cladding

can be treated easily in similar fashion.
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