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where the symbol ¥, implies that the summation does not
include n=m. On replacing the coefficients C,,,(z’) by the
first three terms of its Taylor series expansion, a re-
currence formula that expresses f,(z—Az) in terms of
f.(2) is obtained upon integration. Thus the solution of
(Al) for the region z, >z >z is

flp+1)=P (p+1/2)| £.(p)P, (P+1/2)

+ 3D, (p+ /(PRI (p+1/2)] (A

where
zp=L~pAz,
zp=L—(p+1)Az,

z,=L—(p+1/2)Az (A3)

+ AZ AZ ’ (AZ)Z 7
Pm—exp{——z——{cmni—“—Cmn+ 24 Cmm}:| (A4)
1 1-4 t g
D _=—-Azsincl |C +1A—ZC’ ~ " Pn OO T
mn mn| “~mn 9 —mn gmn
(_A_Qz_ 1" _ 2(1 — an cot 0mn)
+ 3 Cr il Bin (AS)
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and

iAz
Hmn=_2—[cmm_cnn]' (A6)
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Modal Analysis of Homogeneous Optical Fibers
with Deformed Boundaries
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Abstract—The modal characteristics of homogeneous optical fibers with
several types of deformed boundaries are analyzed by a numerical method
based on the point-matching principle. The propagation constants of
various modes are given. The separation of degeneracy in the dominant
mode is discussed. The results of microwave-model experiments show good
agreement with those of calculation.
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I. INTRODUCTION

ITH THE RECENT development of communica-

tion techniques using low-loss optical fibers, it be-
came important to investigate detailed electromagnetic
fields and propagation characteristics of various optical
fibers. We pay attention to modal characteristics of a class
of optical fibers with deformed boundaries which would
be caused in the process of fabrication. Many approxi-
mate methods have been recently applied to analyze
graded index optical fibers. Yet, only a few papers have
discussed the problem of deformed boundaries.
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Yeh [1] has analyzed elliptical dielectric waveguides by
deriving infinite determinants on hybrid modes. Schlosser
[2] investigated a slightly elliptical dielectric wire by using
the solution of the wave equation in the circular cylindri-
cal coordinates. He also calculated the delay distortion of
signals in glass fiber due to small elliptical deformations
of boundaries [3]. Since wave equations are not separable
except in eleven coordinate systems, numerical methods
are required.

Goell [4] described a computer analysis of the propagat-
ing modes in rectangular dielectric waveguides. He ex-
panded electromagnetic fields in terms of circular
harmonics and employed the point-matching method to
satisfy boundary conditions approximately. This approach
is considered to be applicable to dielectric waveguides of
other cross sections. James and Gallett [5] also pointed
out the usefulness of this approach. Bird [6] has discussed
guiding structures of polygonal boundaries based on the
hybrid finite element method.

This paper describes the results of computer analyses
on the propagation modes and electromagnetic fields of
optical fibers with deformed boundaries by extending
Goell’s approach to more general cases. Microwave-model
experiments that confirm our theoretical results are also
described.

JI. METHOD OF ANALYSIS

A circvlar dielectric waveguide has been rigorously
analyzed by the method of separation of variables. As a
result, the electromagnetic fields in the waveguide are
expressed in terms of Bessel’s functions, and those outside
the waveguide are expressed in terms of modified Bessel’s
functions. The treatment of hybrid modes is necessary to
satisfy the boundary conditions on the waveguide surface.
The dominant mode of this waveguide is known as the
HE,, mode and has no cutoff frequencies.

Numerical methods are required to analyze general
boundaries. It is natural to use a linear combination of
Bessel’s functions in expressing electromagnetic fields of
dielectric waveguides with boundaries close to circular.
Therefore. the longitudinal components of the electric and
magnetic fields can be written [5]

= i [} sin (nB)+af cos (nf)]J,(hr)e/ = (1)
n=0
H, = ;g() [ b sin (nf)+ b7 cos (n8) ]J,(hr)e’“~F  (2)
in the waveguide and
- g [} sin (n0)+ cf cos (n0) | K(pr)e’ @5 (3)
H,= i [d; sin (nf) + dy; cos (n0) K, (prye’“ =5 (4)

0

n

outside the waveguide where
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Fig. 1. TIlustration of a tangential component of an electric field vector
E,, composed of the r-component E,, and the #-component E,: €; = nie,.

W =ki— (5)
pP=B>—k; (6)
k12=°"2€1 Yo Q)
K=oy (®)

and J,(hr) and K,(pr) are Bessel’s function and modified
Bessel’s function of the nth order, respectively.
The other field components are derived using Maxwell’s

equations
__—JB_[JE %)31’: 5
= k2_132{ ar +( Br) o ®)
_ B ’1%_(w)aﬂ~ |
EB= g0 "\ B ) o (19)

— k2 a_E.:'.+y_I_~'
- k*—pB%| wpo Br | 00 ar

__—JB [[_k_\3E 13,
Hy= (w,uo,B) or T 8

e
A~
—
p—

(12)

where k=k, in the waveguide and k=k, outside the
waveguide. The boundary conditions imposed on fields
are the continuation of tangential components. The
tangential components of fields at any boundary point
can be expressed by combining the r- and f-components
of the field. This is illustrated in Fig. 1.

The boundary conditions would lead to an infinite set
of equations. To make the problem tractable, boundary
conditions will be satisfied only at a finite number of
points on the boundary. The infinite series are truncated
to form a square-matrix equation on the coefficients of
basis functions. Since this equation is homogeneous, the
determinant must vanish.

Combined with (5) and (6), the determinant equation
gives the phase constant of propagating modes. Let us
empbhasize that the required number of basis functions is
affected by the symmetry and the smoothness of the
boundary geometry.

In this paper, we adopt the Goell’s scheme [4] and
designate propagation modes as E, or E}  according to
the direction of the electric field vector in the high
frequency limit. This method of denoting modes is con-



354

venient when boundary shape has symmetry and becomes
difficult when the boundary lacks symmetry.

The refraction index of the optical fiber is denoted as
n,. The difference between the refraction index of the
optical fiber and vacuum is denoted as Axn,. That is,

k
n= ;i (13)
Any=n;—1. (14)
The propagation constant 3 is normalized as
ko)’ —1
p2= (B/ 0) (15)

2
ni—1

and the optical frequency is also normalized as

A=20 (16)
Ao
where a is the maximum diameter of a fiber.

III. REesuLts oF COMPUTATION

A. Types of Treated Boundaries

Fig. 2 shows several types of boundaries treated in our
computation. The ellipse (a) can be analyzed most easily
by this method because it is smooth and has two axes of
symmetry. In other words, we only have to treat the first
quadrant. The chipped circle (b) also has two symmetry
axes but has four corners. Since fields change rapidly near
corners, more boundary points should be taken compared
with the case of smooth boundaries. The egg shape (c) has
a smooth boundary but has only one symmetry axis. An
asymmetrical shape (d) is also analyzed.

B. Propagation Constants

Figs. 3 and 4 show the calculated values of P? against 4
for two types of boundaries. It is seen in all of these
graphs that the degeneracy of the HE,, mode has been
lifted by the deformation, and the mode separates into a
E}, mode and a E}, mode. The TE,, and TM,,, modes of a
circular dielectric waveguide are corresponding to the EJ;
mode and the E3; mode, respectively. The degeneracy of
the HE,, mode is also lifted, and the mode separates into
a E}, mode and a E{, mode.

C. Number of Basis Functions

The convergence of eigenvalues or the normalized prop-
agation constant P> depends on the symmetry and
smoothness of the boundaries, as shown in Tables I and
II. The dimension of the matrix is four times the number
of boundary points. The maximum dimension of matrices
permitted by our computer is about 100. This means that

the types of boundaries explored in this paper can be -

casily handled, and P2 can be obtained with three signifi-
cant digits. Table III shows typical matrix dimensions.

The computation times for obtaining P2 from the root
of a matrix of dimension M increases exponentially with
M. In our computer HITAC-8700, this relation is

§=0.016 exp (0.062M)(s). (17
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Fig. 2. Types of deformed boundaries. (a) Ellipse. (b) Chipped
circle. (c) Egg shape. (d) Asymmetrical shape.
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Fig. 3. The normalized propagation constant of an elliptical fiber:
b=038a, An;=0.5.
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Fig. 4. The normalized propagation constant of an egg-shape fiber:
b=0.9a, c=0.8b, An;=0.5.

D. Wave Functions

The convergence of an algorithm for wave functions is,
in general, slower than for the evaluation of P2 However,
it is important to see if the numerically obtained wave
functions are physically reasonable, even if only the prop-
agation constants are required. Fig. 5 illustrates the con-
vergence of the E,-component in the case of the Ej; mode
of the chipped-circle boundary.

E. Field Distribution

When eigenvalues are determined, fields may be ob-
tained. It is an important and interesting fact that the
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TABLE 1
THE CONVERGENCE OF P2 BY INCREASING THE NUMBER OF BAsIs
FUNCTIONS NV IN THE CASE OF AN ELLIPTICAL FIBER.
b=08a, An;=0.5

[\ 2
P
Y Y X Y
HODE Ell E3l E22 E13
A 2.0 4.0 4.0 4.4
2 0.5223 0.4424 0.3499 0.3038
3 0.5225 0.4397 0.3534 0.3010
N 4 0.5225 0.4398 0.3538 0.3011
5 0.5225 0.4399 0.3538 0.3011
6 0.5225 0.4399 0.3538 0.3011
TABLE I1

THE CONVERGENCE OF P2 BY INCREASING THE NUMBER OF Basis
FuNCTIONS N IN THE CASE OF AN EGG-SHAPE FIBER.
b=0.9a, c=0.8b6, An;=0.5

p2
4 y X Y
MODE Ell E3l E12 EZJ.
A 2.0 4.0 3.2 3.2
8 | 0.5653 | 0.4668 | 0.5220 | 0.6556
9 | 0.5722 | 0.5012 | 0.5088 | 0.5573
10 | 0.5620 | 0.5070 | 0.5022 | 0.5816
N 11 | 0.5656 | 0.4783 | 0.4922 | 0.5639
12 | 0.5678 | 0.4647 | 0.4979 | 0.5624
13 | 0.5650 | 0.4668 | 0.4966 | 0.5699
14 | 0.5669 | 0.4677 | 0.4951 | 0.5643
15 | 0.5651 | 0.4653 | 0.4972 | 0.5651
TABLE III
THE REQUIRED DIMENSION OF MATRICES M FOR VARIOUS
BOUNDARIES.
M
MODE DOMINANT HIGHER ORDER
ELLIPSE 12 16 ~20
CHIPPED-CIRCLE 20 28~ 32
EGG SHAPE 38 46
ASYMMETRICAL SHAPE 44 48

dominant HE,;; mode separates into two modes which
have different polarizations and no cutoff frequencies.
These two polarizations are related to the existence of two
independent polarizations of plane waves in free space.
Fig. 6 illustrates the pattern of the electric field vectors of
these two modes in the cross section.

F. The Phase Constant Difference Between the Two Funda-
mental Modes

In the fabrication process of optical fibers, the nomi-
nally circularly symmetric cross section gets more or less
deformed. Therefore, the two fundamental modes £7) and
E?, have a phase constant difference AB [3]. When the
two modes are excited at the input of the optical fiber,
rotation of the polarization is significant after some length
L of fiber. When the deformation of boundaries is small,
AB is given approximately by
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Fig. 5. An illustration of the convergence of wave functions. The
distribution of the E, component on the x axis in the case of the E{j
mode of the chipped-circle fiber: b=0.8a, An;=0.5, 4=2.0. (a)
N=5 (b)N=7. (c) N=9.

Fig. 6. The direction of electric field vectors in the cross section of an
egg-shape fiber: b=09a, ¢=0.85, An;=0.5, 4=2.0. (a) £}; mode.
(b) E}, mode.

a

AB _ 2, b-a s
s = C(A)An3- = (18)

in the case of an ellipse or chipped circle where C is a
function of 4.
Examples of calculated values are

C=0.305 (ellipse, 4=2.0)
C=0.166 (chipped circle, 4 =2.0).
If the parameters of an optical fiber are given by

(19)
(20)

bz_a“ =000l  Anm=0005 A,=10pm (21)
the calculated fiber length L such that
AB-L= g (22)
is 60 m.

IV. MICROWAVE-MODEL EXPERIMENTS

We tested the accuracy of the numerical data calculated
by the above method by microwave-model experiments.
Teflon was selected as the dielectric material to forrn
waveguides since its dielectric constant is known and it
has no dispersion at microwave frequencies.
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Fig. 7. Experimental setup to measure resonant frequencies of Teflon
rod waveguides.
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Fig. 8. Comparison of measured values with calculated values of P2 in

the case of a circular dielectric waveguide: n?=2.04 (Teflon).

The chipped-circle boundary was selected because it
can be fabricated easily. Teflon rods with diameters from
1 to 4 cm were used to make resonators. Resonance
frequencies of these resonators were measured at
frequencies from 8 to 12 GHz by the experimental setup
as shown as the diagram in Fig. 7. The values of P? were
calculated from these data and plotted in Figs. 8-10.

Fig. 8 shows the case of a circular cross section. Be-
cause this has been analyzed rigorously, good agreement
between these theoretical and experimental values is a
check on the accuracy of the experiments. Figs. 9 and 10
show the gradual change of P? for a chipped-circle
boundary of increasing deformation.

These experimental results agree well with calculated
values. Hence, the numerical analysis described in this
paper is considered to be useful for solving deformed-
boundary problems.

V. CoONCLUSION

The modal characteristics of homogeneous optical
fibers with several types of deformed boundaries were
investigated by a numerical method based on point-
matching. The propagation constants were obtained with
three significant figures. Microwave-mode! experiments
using Teflon waveguides agree well with the calculated
values.

A functional-analysis approach would be necessary for
investigating precisely the convergence problem in this
method. However, the results of computer experiments
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Fig. 9. Comparison of measured values with calculated values of P? in
the case of the Ef; mode of a chipped-circle dielectric waveguide:
n#=2.04 (Teflon).
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Fig. 10. Comparison of measured values with calculated values of P2
in the case of the E{; mode of a chipped-circle dielectric waveguide:
n}=2.04 (Teflon).

and microwave-model experiments seem to justify the
practical use of this method for analyzing various
boundaries close to a circle.

The outside medium was taken to be a vacuum. How-
ever, structures consisting of a core fiber and a cladding
can be treated easily in similar fashion.
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